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Abstract 

Assessment of seismic safety of nuclear power plants requires convolution of   
plant fragilities with seismic hazard curves. In this paper, an option for 
representing the uncertainty of seismic fragility is outlined based on the interval 
and p-box concept. The conditional probability of failure is developed as a function 
of the cumulative absolute velocity. The dependence of the cumulative absolute 
velocity on the strong motion parameters is analysed. It is demonstrated that the 
cumulative absolute velocity is an appropriate damage indicator for fatigue  
failure mode. Relation between cumulative absolute velocity of failure and               
various failure theories is established in this paper. 

1. Introduction 

Seismic probabilistic safety assessment of plenty of nuclear power 
plant (NPP) shows that the earthquakes may be the dominating 
contributors to the core damage, i.e., to the overall risk. These results 
indicate the vulnerability of the nuclear power plants against 
earthquakes. On the other hand, experiences show that plants survive 
much larger earthquakes than those considered in the design base, as it 
was the case of Kashiwazaki-Kariwa NPP, where the safety classified 
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structures, systems, and components survived the Niigata-Chuetsu-Oki 
earthquake in 2007 without damage and loss of function [10]. In spite of 
the nuclear catastrophe of the Fukushima Daiichi plant caused by the 
tsunami after Great Tohoku earthquake 11th of March 2011, the 
behaviour of thirteen nuclear unit in the impacted area on the east-shore 
of the Honshu Island demonstrated high earthquake resistance. 

One of the most complex cases for assessing the nuclear power plant 
safety is the evaluation of the response of the plant to an earthquake load 
and the risk related with this. The probability safety analysis (PSA) has 
to demonstrate whether in case of an earthquake the reactor can be shut 
down, cooled-down, the residual heat can be removed from the core, and 
the radioactive releases can be limited below the acceptable level. The 
core damage frequency is the output of the analysis. Well-defined set of 
plant systems and structures and components (SSCs) are required to be 
functional during and after the earthquake for ensuring the mentioned 
above basic safety functions. The frequencies of core damage caused by an 
earthquake are calculated by plant logic convoluting with component 
fragilities, see [1] and [8]. Event trees are constructed to simulate the 
plant system response. Fault trees are needed for the development of the 
probability of failure of particular components taking into account all 
failure modes. The hazard is expressed as complementary probability = 1 
– cumulative probability function, i.e., probability that the peak ground 
acceleration (PGA) exceeds a given value. The fragility is defined as the 
conditional probability of core damage as a function of horizontal ground 
motion acceleration a – PGA at free surface. Based on the experience, one 
can conclude that the design basis capacity expressed in terms of peak 
ground acceleration, which is used for fragility estimation does not 
provide information about failure in case of a particular earthquake. In 
[6], considerations were given on the possibility for derivation of 
conditional probability of failure for cumulative absolute velocity instead 
of peak ground acceleration. 

Beside of the randomness of the resistance of the structure, damage 
of the structure may depend on the PGA, length of strong motion, 
frequency content of the vibratory motion, etc.. Therefore, it is rather 
difficult to validate the fragility as conditional probability of failure versus 
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PGA. The studies performed by EPRI regarding failure indicators show 
that the cumulative absolute velocity (CAV) could be better correlated to 
damage rather than the PGA [3]. The EPRI studies validate the lower 
bound of standardized CAV for damage of non-engineered structures. 
U.S. NRC Regulatory Guide 1.166 defines the criteria for exceedance of 
operational base earthquake level. 

In this paper, the basic idea of the calculation core damage frequency 
due to earthquake is given, and an alternative representation of the 
uncertainty of the fragility is presented on the basis of [6]. 

A physical interpretation of the cumulative absolute velocity and its 
dependence on strong motion parameters and load characteristics 
relevant for damage indication are discussed in [7]. It is also shown in [7], 
why the cumulative absolute velocity is an appropriate damage indicator, 
especially for the fatigue-type damage. 

In this paper, the cumulative absolute velocity – which is some kind 
of measure of the energy of the ground motion obtained from the free-
field record – is expressed as a function of basic characteristics of the 
ground motion, i.e., strong motion duration and power spectra. The 
cumulative absolute velocity will be linked to the stress or strain 
amplitudes and cycles affecting the component and causing fatigue type 
damage. With respect to the earthquake damage, different types of 
fatigue mechanisms can be considered, e.g., the ultra low-cycle fatigue, 
low-cycle fatigue. Relation between cumulative absolute velocity of  
failure and various failure theories, e.g., fatigue failure condition the 
Bendat narrow-band theory and Dirlik formulation of the random 
amplitude fatigue failure, and the crack-growth condition has been 
established in this paper. 

2. Basics of the Probabilistic Seismic  
Safety Analysis 

In the probabilistic safety assessment for seismic events (seismic 
PSA), modelling of complex component behaviour requires Boolean 
description of sequences leading to failure. 
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Plant level fragility is obtained by combining component fragilities 
according to the Boolean-expression of the sequence leading to core 
damage. 

The plant level fragility is defined as the conditional probability of 
core damage as a function of free field PGA at the site. 

Plant level fragilities are convolved with the seismic hazard curves to 
obtain a set of doublets for the plant damage state. 

For evaluation of core damage frequency, the doublets { }ijij fp ,  has 

to be obtained, where ijf  is the seismically induced plant damage state 

frequency 

( ) ,
0

adda
dH

aff j
iij ′′−= ∫

∞

 (1) 

where ijp  is the discrete probability of this frequency ijiji qpqp ,, =  is 

the probability associated with of i-th fragility curve, ( ) ,iaf  and the jp  is 

the probability associated with j-th hazard curve, .jH  The fragility curve 

( )iaf  is the i-th representation of the conditional probability of core 

damage (plant failure resulting into core damage). The dadH j  is the 

probability density function of the applied seismic load expressed in 
terms of peak ground acceleration, taken from the j-th hazard curve. 

According to the Equation (1), the uncertainty in plant level fragility 
is displayed by developing a family of fragility curves. The weight 
(probability) assigned to each curve is derived from the fragility curves of 
components appearing in the specific plant damage state accident 
sequence, i.e., the process of development of plant fragility starts with 
identification of failure modes and corresponding conditional probability 
distribution function for failure for SSCs required for safety. 

The procedure is as follows: 

– Construct fault tree. 
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– Convert fault tree logic to Boolean equation. 

– Derive minimal cut set from the Boolean equations by using 
Boolean algebra. 

– Calculate top event probability by using the derived minimal cut set 
and fragility data. 

Considering the practical applications of seismic PSA, there are 
plenty of failure modes to be accounted in the model. Active components 
typical failure modes are the stretching or loosing, distortion/deformation, 
drop out of parts, impact/contact, flooding/spraying. Typical failure modes 
of passive components are breaking, distortion/deformation, drop out of 
parts, impact/contact, flooding/spraying. 

Typical numbers of failure modes for different components are, e.g., 

– Heat exchangers: damage of main body, flange part, heat 
exchanging tubes, supports, nozzles. 

– Valves: malfunction of drive, yoke damage, leakage from valve seat, 
loss of structural integrity. 

– Horizontal pumps: damage of fixes, supports, damage of shaft, shaft 
joints, mechanical seal, bearing, loss of power, damage of nozzles. 

3. Alternative Representation of the  
Uncertainty of the Fragility 

The capacity for a given failure mode is characterized by a log-normal 
probability distribution with median capacities and logarithmic standard 
deviations to account for uncertainty in the parameters. Considering the 
epistemic and aleatory uncertainty, the capacity for a given failure mode 
can be expressed via median capacity multiplied by two log-normally 
distributed random variable Rε  and ,Uε  representing the uncertainty 

due to randomness and the epistemic uncertainty, respectively, and with 
logarithmic standard deviation Rβ  and ,Uβ  respectively. 
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According to this, the frequency of failure f ′  at any non-exceedance 
probability level Q  can be written as follows: 

( ) ( ) ,ln 1












β

ϕβ+
ϕ=′

−

R
UmCaf Q  (2) 

where ( ),affP ′<=Q  and ϕ  is standard normal distribution function. 

Not practical to quantify the seismic PSA models using continuous 
families of seismic hazard curves and associated equipment fragility 
distributions. Instead of using families of seismic hazard curves, 
{ }jj Hp ,  as well as the set of equipment fragility distribution, { }ii fq ,  

point-estimates of hazard and fragility are used with subsequent 
uncertainty analysis. 

The recent practice, the analysis of uncertainties is based on the 
probability theory: Point estimates are used in combination with Monte-
Carlo sensitivity analysis. 

Another method for describing and quantifying uncertainty in the 
model represented by Equation (1) can be based on interval probability or 
p-box theory. Instead of point estimates, the upper and lower bounds of 
the distribution functions might be used for replacing the sets { }jj Hp ,  

and { }ii fq ,  by probability boxes specified by a left side and a right side 

distribution functions. 

Based on [6], for the fragility, the following representation can be 
applied: 

{ } ( ) ( )[ ],,, xFxFfq ii →   (3) 

where ( ) ( )[ ]xFxF ,  are the probability-boxes specified by a left side ( )xF  

and a right side ( )xF  distribution functions, and ( ) ( ) ≤≤ xFxF  ( ).xF  

From a lower probability measure P  for a random variable X, one 

can compute upper and lower bounds on distribution functions by using 
formula 



MODELLING OF FATIGUE-TYPE SEISMIC DAMAGE … 43

( ) ( ),1 xXPxFx >−=  

(4) 

( ) ( ).xXPxF x ≤=    

It is often convenient to express a p-box in terms of its inverse 
functions d and u defined on the interval of probability levels [ ].1,0  The 

function u is the inverse function of the upper bound on the distribution 
function and d is the inverse function of the lower bound. These 
monotonic functions are bounds on the inverse of the unknown 
distribution function F  

( ) ( ) ( ),1 pupFpd ≥≥ −   (5) 

where p is probability level. 

In this case, the only information needed (or available) is that 



 ≤=

,otherwise,1
,if,0 xxP fail  

(6) 

 


 ≤=

,otherwise,1
,if,0 xxPfail   

where p-box might be defined in case when the minimum, maximum or 
median, and/or other percentiles of failure distribution are known. 

The most trivial case for the use of p-box can be while performing the 
screening according to ruggedness of the component. The rugged 
components might be described by p-box with a lower bound x  (PGA or 

any other damage indicator) below of that no failure may occur and an 
upper bound of x  above that the failure will occur for sure. 

The probability bounds might be calculated for cases in which, the 
distribution family is specified by interval estimates of the distribution 
parameters. 
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Probability bounds can be calculated for distribution families using 
only interval estimates for the parameters or having information only on 
{min, max} or {min, max, mode} or {min, max, mean} of the variable. 
Upper and lower bounds on parametric values can be provided, typically 
from expert elicitation 

If the bounds on mean, µ  and standard deviation σ  are known, 
bounds on the distribution can be obtained by computing the envelope of 
all log-normal distributions L that have parameters within the specified 
intervals 

( ) ( ),max 1 pLpd −
αα

=  

(7) 

( ) ( ),min 1 pLpu −
αα

=   

where ( ) [ ] [ ]{ },,,,, 2121 σσ∈σµµ∈µσµ∈α  see Figure 1. 

 

Figure 1. The p-box for log-normal distribution. 
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Real benefit from this type of representation of probability 
distribution might be obtained, if the fragility of a particular failure mode 
of a component is known approximately only, small sample size of 
damage histories, inconsistency of data, or the modelling of failure 
component is uncertain (e.g., if the set of possible failure modes might be 
incomplete). 

Explicit numerical methods exist for computing bounds on the result 
of addition, subtraction, multiplication, and division of random variables, 
when only bounds on the input distributions are given (see, e.g., [5] and 
[12]). These algorithms have been implemented in software and have 
been extended to transformations such as logarithms, and square roots, 
other convolutions such as minimum, maximum, and powers, and other 
dependence assumptions. 

3. Fragility Versus Cumulative  
Absolute Velocity 

3.1. The cumulative absolute velocity as fragility parameter 

CAV is calculated as simple integral over the time history of absolute 
value of acceleration component 

( ) .
0

dttaCAV
T

∫=  (8) 

The standardized CAV is calculated applying a noise-filter for the 
amplitudes less than g025.0±  [3]. CAV is depending on several 

parameters of the strong motion: duration, PGA, frequency content. 

As it is indicated in [6], the probability of damage/failure is depending 

on a load vector ( )…,, 21 xxX =  rather than on a single parameter. 

( ) ( ) ,,,,, 312121 ……… dxdxxxPxxhP
R

fail ∫=  (9) 
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where ( )…,, 21 xxh  represents the hazard, i.e., it is the probability 

density function of applied loads in terms of CAV and ( )…,, 21 xxP  

denotes the conditional distribution function of failure. 

This approach might seem theoretically precise, however definition of 
the dependence of fragility on the components of the load vector requires 
enormous effort. The characterization hazard should also correspond to 
the description of fragility. 

It seems to be interesting to establish a method for fragility modelling 
based on use of CAV as a non-negative single load parameter .0≥x  The 
considerations below are made on the basis of [6]. 

For the sake of simplicity of writing, CAV will be denoted below 
simple by x. Equation (9) can be rewritten as follows: 

( ) ( ) .
0

dxxPxhPfail ∫
∞

=   (10) 

Assuming that, if a failure occurs for a value of CAV equal to x, then 
it is occurs for all values larger than x. 

In this case, the conditional probability distribution function ( )xP  

coincides with the cumulative probability distribution function of the 
failure load parameter ,λ  i.e., of the smallest value of the load parameter 
that the structure is unable to withstand [6], 

( ) ( ).xPxP ≤λ=   (11) 

From the equation above, the average value of the failure load 
parameter can be calculated. The average CAV-value of failure 

( ) .
0

xddx
xdPx ′′′=λ ∫

∞

  (12) 

With other words, for the effective use of CAV in fragility analysis, 
the value λ  has to be evaluated from the empirical data (damages of 
earthquakes, fragility tests) for all type of SSCs and failure modes. 
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3.2. Interpretation of the physical meaning of the CAV 

As it has been shown in [6], the value of CAV is varying within wide 
range depending on several parameters of the ground motion: PGA, 
duration, T, and frequency content of the random motion. However, these 
dependences except of the dependence on T are not obvious and not 
explicit. It is reasonable to define the dependence of the CAV on the 
strong motion parameters. 

Let consider the Equation (8) and apply the mean value theorem for 
the integral. The ( )ta  is an integrable function and its mean value on T 

is equal to ( ){ }.taE  The Equation (8) can be rewritten as follows: 

( ) ( ){ }.
0

taETdttaCAV
T

∗≅= ∫   (13) 

Thus, the CAV can be considered as product of two random variables, 
the duration of strong motion T and the mean of absolute value of ground 
acceleration time history. Generally, the variables T and ( ){ }taE  might 

not be independent. 

The strong motion acceleration time history can be written in form 
( ) ( ) ( ),txtIta =  where ( )tI  is a window-function on [ ]T,0  interval, i.e., 

( ) 0≡tI  if 0=t  and Tt =  and outside of interval and ( ) 0>tI  within 

the interval. It is assumed that ( )tx  is a stationary normal random 

process. However, ( )ta  is a non-stationary normal process. For the sake 

of simplicity, let us assume that ( )ta  is a stationary normal random 

process with zero mean and probability density function ( )afa  and 

autocorrelation function ( ).τR  In this case, the random process 

( ) ( )tatz =  has the density function, ( ) ( ) ( ),2 zUzfzf az =  and its mean 

value is as follows (see [9]): 

( ){ } ( ) ( ),02 RdaafataE a π
== ∫

∞

∞−
  (14) 

where ( )0R  is the autocorrelation function of ( )ta  at .0=τ  
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We can write further for ( )0R  that 

( ) ( ) ,2
10 ωω
π

= ∫
∞

∞−
dSR aa   (15) 

where ( )ωaaS  is the power spectral density (PSD) function of ( ).ta  

The power spectral density function ( )ωaaS  of the earthquake ground 

motion acceleration is showing band-limited or even narrow-band 
character. Since we intend to explain the qualitative features of the CAV, 
we may assume that ( )ta  is an ideal band-limited process with PSD 

( )


 ω≤ω≤ω

=ω
elsewhere.,0

,if, 210S
Saa  (16) 

This assumption is based on NUREG-0800, where the one-sided PSD 
of the horizontal ground motion acceleration time history is linked the 
Regulatory Guide 1.60 standard response spectrum [7]. 

It is obvious that, the excitation energy is concentrated within a 
narrow frequency range. Thus, the ( )0R  can be written as follows: 

( ) ,2
10 0 ω∆
π

= SR   (17) 

where 12 ω−ω=ω∆  is the bandwidth. The Equations (8) and (13) can be 

rewritten as follows: 

.1
02 ω∆

π
= STCAV   (18) 

Introducing the median frequency ;cω  

.2
12

1
ω−ω

+ω=ωc   (19) 

In addition, the number of load cycles during the strong motion, N 

,2 NT c π=ω   (20) 
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the CAV can also be expressed as follows: 

.2
0 ω∆

ω
= SNCAV

c
  (21) 

If the ( )ta  is band-limited, it can be represented via sum of sine 

functions 

( ) ( ).sin
1 iii

n

i
tAta φ+ω= ∑ =

  (22) 

The energy of ( )ta  should be distributed according to the following 

equation: 

{ ( )} .2
2

1
2 in

i
AtaE ∑ =

=   (23) 

Furthermore, the frequencies iω  should be within δω  intervals and 

( ) .2
2
i

iaa
AS =δωω   (24) 

For the sake of simplicity, let us represent the excitation by a single 

sine with median frequency cω  and ,2 2
0 cAS =ω∆  we obtain 

.121
c

c
c NATACAV

ω
=

π
=   (25) 

On the basis of above considerations, the following conclusion can be 
drawn: 

– The CAV is proportional to the product of strong motion duration 
and average energy (RMS) of the strong motion acceleration time history 
( ),ta  as it shown by Equation (13). This result is rather trivial. 

– The CAV should be an adequate damage indicator, since it is 
reflecting the main parameters of damage phenomena. The CAV depends 
on the strong motion duration, T, number of load cycles, N, and median 
frequency, ,cω  and amplitude of the alternating load, which is 

proportional to the ground motion acceleration amplitude, i.e., .cA  
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– The higher the mean frequency of the excitation is, the less will be 
the possibility of a damage, which corresponds to the observations. 

3.3. CAV as damage indicator for fatigue failure mode 

Several damage mechanisms due to cyclic earthquake loads might be 
in place: 

– Ultra-low cycle fatigue. 

– Low-cycle fatigue without crack or with pre-existing crack. 

A straightforward calculation of the fatigue damage to a structure 
consists of four basic steps: 

(1) Calculate the (nonlinear) time-history response of the structure to 
an earthquake loading. 

(2) Extract the response quantities of interest. 

(3) Convert the time history response to an equivalent series of 
loading cycles. 

(4) Calculate the fatigue damage of the equivalent cyclic responses. 

Fatigue damage estimation involves the cycle counting of equivalent 
stress ranges and accumulation of fatigue damage from each cycle. 

With mechanical equipment, the cycle amplitudes are generally 
constant and known and the fatigue limit is directly determined from 
experiments. However, seismic loads are not made up of complete, 
consistent cycles. Typical seismic response time histories exhibit varying 
amplitudes, mostly partial cycles, and no complete symmetric cycles. 

After estimating an equivalent stress range distribution either in the 
time domain or in the frequency domain, the linear Palmgren–Miner rule 
is used to predict the damage per cycle as 

,1
i

i ND =   (26) 

where iD  is the damage for cycles of magnitude i, and fiN  is the number 

of cycles to failure at level i. The total damage to a member over the 
complete cycling history is then estimated as 
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,
1 fi

in

i N
NFDI ∑ =

=   (27) 

where FDI is the fatigue damage index, or total damage to the element 
due to the cyclic load, n is the number of different cycle amplitudes in the 
loading history, and iN  is the number of cycles at amplitude i. 

Values of FDI greater than or equal to 1.0 indicate a low-cycle fatigue 
fracture of the structure. 

In order to use the measured seismic response to calculate fatigue 
damage, it is necessary to convert the time history to a series of varying 
amplitude cycles. The rain-flow method is most commonly used for 
converting random stressors to cycles. 

Let us consider a free-field mounted one-degree-of-freedom (ODF) 
structure, with m, mass, k, stiffness, c, damping, ,0ω  resonance 

frequency, ,2 km
c=ξ  and transfer function ( ).,, 0ωξωH  Assuming 

linear stress strain relationship, the stress level ( )ts  is directly 
proportional to the relative displacement level ( ),tz  i.e., ( ) ( ).tkzts =  
Calculating the relative displacement response of the ODF system to the 
sinusoidal excitation with ( ),sin tA cc ω  the stress level might be defined. 

Standard fatigue model might be applied for the definition of the 
number of cycles to failure for the calculated stress amplitude. 

For the ODF system, the CAV to fail can be calculated by using 
Equations (13), (14), and (15). In the case of generic base excitation ( ),ta  
the response of the ODF in terms of stress level will be 

( ) ( ) ( ).,, 2
0

22 ωωξωω=ω aass SHkS   (28) 

Equation (28) can be generalised introducing the transfer function 
( )ωayH  between ground motion acceleration ( )ta  and any response 

quantity of interest y (e.g., stress, strain, displacement) 

( ) ( ) ( ),2 ωω=ω aaayyy SHS   (29) 
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For the definition of the fatigue failure based on the spectral 
representation of the stress history ( ),ωssS  the moments im  of the power 
spectral density have to be calculated for the definition of the stress 
range, number of zero-crossing, number of amplitude maxima 

( ) ,
0

ωωω= ∫
∞

dfGm ss
n

i   (30) 

where ( )ωssG  is the one-sided PSD corresponding to ( ).ωssS  Thus, the 
following equation can be written: 

– for the root-mean-square value ,0mRMS =  

– for the zero-crossing 

[ ] ;0
0

2
m

mE =   (31) 

– for the peak-rate 

[ ] .
2

4
m

mPE =   (32) 

Utilising Equation (29) and assuming narrow-band feature for ground 
motion acceleration as it is expressed by the Equation (16), Equation (30) 
can be rewritten as follows: 

( ) ( ) ,2

0
ωωωω= ∫

∞
dSHm aaay

n
i   (33) 

( ) .2
0

2

1

ωωω= ∫
ω

ω

dHSm as
n

i   (34) 

For the RMS, the following equation can be derived: 

( ) .2
00

2

1

ωω= ∫
ω

ω

dHSm as  (35) 

It means that the excepts of the ,0mRMS =  all interested values, 
[ ]0E  and [ ]PE  are independent form the excitation. 
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For the calculation of fatigue failure condition, the Bendat narrow-
band theory can be used [2]. It is assumed, that the probability density 
function of the peaks for the narrow band signal can be approximated by 
Rayleigh distribution. Thus, the equation can be written as follows: 

( ) ( )

( ) ,8exp4

,

0

2

00

01

dSm
S

m
SSTPEFDI

dSSpSS
SN

NFDI

b

bt
i

i
n

i
















 −
κ

=

κ
==

∫

∫∑

∞

∞

=
 (36) 

where ( )iSN  is the number of cycles of stress range S occurring in T 

seconds, iN  is the actual counted number of cycle, ,NSt =  the total 
number of cycles equal to [ ]{ } [ ]PETPE ,  is the number of peaks per 
second. Parameters κ  and b are the materials constant defining the 
fatigue curve. In the Equation (36), the 0m  is depending on the input 
excitation power spectral density function, which is assumed to be equal 
to .0S  

In the Equation (36), the 0m  can be expressed via Equations (18) and 
(21). Thus, the link between CAV and fatigue failure condition is 
established. 

Similarly, the Dirlik solution [4] for the ( )Sp  probability density 
function can be linked to the CAV of ground motion exciting the 
structure. 

The number of stress cycles of range ( )SN  can be calculated via 

( ) [ ] ( ).STpPESN =   (37) 

Dirlik solution for the probability density function is as follows: 

( ) ,
2 0

32
21 2

2
22

2

m

ZeDe
R

ZDeD

Sp

Z
R
ZZ −−−

++
=

Q
Q  (38) 
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where RDDD and,,, 321  are parameters depending on ,,, 210 mmm  

and ,4m  but not depending on the input excitation power spectral 

density, if the excitation is narrowband. 

The Z is depending on the RMS of the input excitation, which can be 
expressed by CAV via Equations (17) and (18). 

Thus, the final results of the calculation of the fatigue failure can be 
correlated to the cumulative absolute velocity of the ground motion 
excitation. 

There are other fatigue failure theories, which can be correlated to 
the ground motion excitation via CAV. 

Assuming that the failure mode is the low-cycle fatigue, the well-
known Coffin-Manson relation for low-cycle fatigue can be written 

( ) ,22
c

f
p Nε′=

ε∆
  (39) 

where 2
pε∆  is the plastic strain amplitude, fε′  is the fatigue ductility 

coefficient, 2N is the number of reversals, or simple the N cycles, and c is 
an empirical constant ranging from − 0.5 to − 0.7. 

For the sake of simplicity, the represent the excitation by a single 

sine with median frequency ,cω  and .2 2
0 cAS =ω∆  Assuming that the 

parameter interested is 

,2 c
p AH=

ε∆
  (40) 

where H  is the amplification of the transfer. For the CAV to fail can be 

written using Equation (25) as follows: 

( ).
2 1 c

c

f
fail NCAV +

ω
ε′

=   (41) 

Thus, the CAV to fail is connected via Equation (41) to the failure 
criteria due to the low-cycle fatigue. 
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Failure of a material due to fatigue may be viewed on a microscopic 
level. The first phase is the crack initiation. The crack may be caused by 
surface scratches due to the handling, or tooling of the material, or 
intersecting the surface as a result of previous cyclic loading. The second 
phase is the crack propagation: The crack continues to grow during this 
stage as a result of continuously applied stresses. The final phase is the 
failure, which occurs when the material that has not been affected by the 
crack cannot withstand the applied stress. For example, the Newman’s 
stress intensity solution can be used to calculate the RMS stress intensity 
factor range ,RMSK∆  see, e.g., [11]. 

( ) ,max,max, eRMSRMSRMS MQ
aK πσ−σ=∆   (42) 

where a is the crack depth and Q is the elastic shape factor for an 
elliptical crack, and eM  is the elastic magnification factor. The maximum 

and minimum stress RMS values can be calculated utilising the moments 
of the power spectral density function of the stress response, see Equation 
(30). The latter can be linked to the power spectral density of the 
excitation via Equation (28). 

4. Conclusion 

Seismic probabilistic safety assessment became recently high 
importance. Reliable methods for justification of the plant safety are 
needed for the cases, when earthquake hits the plants. 

One of the basic issues of seismic PSA development is the definition of 
component and plant fragilities. Sparse statistical information exists on 
behaviour of complex structures/machines under earthquake loads. 
Fragility test of components might be very expensive. The experimental 
data does not provide information on all possible failure modes. Epistemic 
uncertainty in the failure modelling might be substantial. 

One possible way for the seismic PSA improvements might be the 
utilization of bounding approach as outlined in the paper. A bounding 
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approach to risk analysis extends and complements traditional probabilistic 
analyses when analysts cannot specify precise parameter values for input 
distributions or point estimates in the model, precise probability 
distributions for some or all of the variables in the risk model, nature of 
dependencies between variables or even the exact structure of the risk 
model. Upper and lower bounds on parametric values can be provided, 
typically from expert elicitation. There are several advantages of 
utilization of interval and p-box description of uncertainties. Probability 
bounds can be calculated for distribution families using only interval 
estimates for the parameters or having information only on {min, max} or 
{min, max, mode} or {min, max, mean}. Explicit numerical methods exist 
for computing bounds on the result of addition, subtraction, 
multiplication, and division of random variables when only bounds on the 
input distributions are given. These methods are successfully used in 
other areas of risk analysis. 

In the seismic PSA practice, the component fragility development is 
based on the design information anchored into PGA. Other 
representation of load, for example, using cumulative absolute velocity as 
load parameter may improve the calculation of probability failure. As it is 
shown in the paper, the CAV-value correlated to the failure can be used 
as the failure load parameter. It is also shown in the paper, that the CAV 
is an adequate damage indicator since it is reflecting the main 
parameters of damaging processes, e.g., the CAV is proportional to load 
cycles causing low-cycle fatigue type damage. In this paper, the 
dependence of the CAV on the strong motion duration, T, number of load 
cycles, N, and median frequency, ,cω  and amplitude of the alternating 

load, cA  (the ground motion) is demonstrated. 

Based on the interpretation of the CAV of the equipment given in the 
paper, the CAV can be correlated to the failure criteria for fatigue. The 
CAV can also be linked to the failure criteria of the random amplitude, 
frequency-domain fatigue analysis, as well as to the low-cycle fatigue 
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failure criteria. A correlation between CAV and stress intensity factor 
range can also been established. 

Having this correlation, one can assess the condition of the equipment 
if an earthquake happen, which may contribute to the quick assessment 
of the plant condition after an earthquake. 

There is an advantage of the use of the CAV for damage indicator, 
since the CAV is calculated nearly real-time form the easy to measure 
free-field acceleration signal. We may define for the critical equipment 
the correlation between fatigue failure and CAV to fail. Having this 
correlation, one can assess the condition of the equipment if an earthquake 
happens. The presentation of the CAV given above allows also the 
correlation of the CAV to the theories of frequency-domain fatigue analysis 
taking into account the narrow-band character of seismic excitation. 
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